Earth & Space Science

Earth & Space Science

  • About This Project
    • Preface/About
    • Author/Contributors
    • For Investors/Donors
    • Teaching Guide
  • Ch 1 – Our Place in the Universe
    • Chapter Introduction
    • 1.1 Our Cosmic Address
    • 1.1.1 Overview
    • 1.1.2 What do we mean when we say “Earth is a planet”?
    • 1.1.3 What is our solar system?
    • 1.1.4 What is a galaxy?
    • 1.1.5 What is the universe?
    • 1.1 Review: Our Cosmic Address
    • 1.2 The Scale of Space
    • 1.2.1 Overview
    • 1.2.2 How Big is the Earth–Moon System?
    • 1.2.3 How Big is our Solar System?
    • 1.2.4 How far are the stars?
    • 1.2.5 How big is the Milky Way Galaxy?
    • 1.2.6 How big is the universe?
    • 1.2 Review: The Scale of the Universe
    • 1.3 Spaceship Earth
    • 1.3.1 How is Earth moving in our solar system?
    • 1.3.2 How is our solar system moving in the Milky Way Galaxy?
    • 1.3.3 How does our galaxy move relative to other galaxies in the universe?
    • 1.3 Review
  • Ch 2 – Understanding the Sky
    • Chapter Introduction
    • 2.1 Our Everyday View of the Universe
    • 2.1.1 What do we see in the local sky?
    • 2.1.2 What is the celestial sphere?
    • 2.1.3 Why do stars rise and set?
    • 2.1.4 Why do we see different constellations at different times of year?
    • 2.1 Review
    • 2.2 Seasons
    • 2.2.1 What causes the seasons?
    • 2.2.2 How do seasons differ around the world?
    • 2.2.3 Does the orientation of Earth’s axis ever change?
    • 2.2 Review
    • 2.3 Viewing the Moon: Phases and Eclipses
    • 2.3.1 Why do we see phases of the Moon?
    • 2.3.2 When do we see different phases of the Moon in our sky?
    • 2.3.3 Why do we always see the same face of the Moon?
    • 2.3.4 What are eclipses?
    • 2.3 Review
    • 2.4 Planets in the Night Sky
    • 2.4.1 How do we recognize planets in the sky?
    • 2.4.2 Why do the planets “wander”?
    • 2.4 Review
  • Ch 3 – How Science Discovered the Earth
    • Chapter Introduction
    • 3.1 The Ancient View of Earth
    • 3.1.1 How did the ancient Greeks learn that Earth is round?
    • 3.1.2 Why didn’t the ancient Greeks realize that Earth orbits the Sun?
    • 3.1 Review
    • 3.2 The Copernican Revolution
    • 3.2.1 How did the idea of Earth as a planet gain favor?
    • 3.2.2 How did Galileo seal the case for Earth as a planet?
    • 3.2 Review
    • 3.3 The Nature of Modern Science
    • 3.3.1 How does science work?
    • 3.3.2 What is a “theory” in science?
    • 3.3.3 What is the value of science?
    • 3.3 Review
    • 3.4 The Fact and Theory of Gravity
    • 3.4.1 What is gravity?
    • 3.4.2 How does gravity hold us to the ground and make objects fall?
    • 3.4.3 Why does gravity make planets round?
    • 3.4.4 How does gravity govern motion in the universe?
    • 3.4 Review
  • Chapter 4 – Planet Earth
    • Chapter Introduction
    • 4.1 A Planetary Overview
    • 4.1.1 What does Earth look like on the outside?
    • 4.1.2 What does Earth look like on the inside?
    • 4.1.3 How has Earth changed through time?
    • 4.1.4 How do we study the Earth?
    • 4.1 Review
    • 4.2 Earth System Science
    • 4.2.1 What are Earth’s four major systems?
    • 4.2.2 What drives Earth system changes?
    • 4.2.3 What IS energy and how do we measure it?
    • 4.2 Review
    • 4.3 Earth In the Context of Other Worlds
    • 4.3.1 How does Earth compare to other worlds of our solar system?
    • 4.3.2 Could there be life on other worlds?
  • Chapter 5 – Earth Through Time
    • Chapter Introduction
    • 5.1 Learning from Rocks and Fossils
    • 5.1.1 How do rocks form?
    • 5.1.2 What are fossils?
    • 5.1.3 How do we learn the ages of rocks and fossils?
    • 5.1 Review
    • 5.2 Shaping Earth’s Surface
    • 5.2.1 How do continents differ from oceans?
    • 5.2.2 What processes shape continents?
    • 5.2.3 What dangers do geological changes pose?
    • 5.2 Review
    • 5.3 Plate Tectonics — The Unifying Theory of Earth’s Geology
    • 5.3.1 What evidence led to the idea that continents move?
    • 5.3.2 How does the theory of plate tectonics explain Earth’s major features?
    • 5.3 Review
    • 5.4 A Brief Geological History of Earth
    • 5.4.1 What major changes mark Earth’s fossil record?
    • 5.4.2 What killed the dinosaurs?
    • 5.4.3 Have we humans started a new geological epoch?
    • 5.4 Review
  • Chapter 6 – Air and Water
    • Chapter Introduction
    • 6.1 Atmosphere and Hydrosphere
    • 6.1.1 What exactly is the atmosphere?
    • 6.1.2 How is water distributed on Earth?
    • 6.1.3 How does water cycle through the hydrosphere and atmosphere?
    • 6.1 Review
    • 6.2 Global Winds and Currents
    • 6.2.1 What drives global winds and currents?
    • 6.2.2 What is the general pattern of winds on Earth?
    • 6.2.3 What is the general pattern of ocean currents?
    • 6.2 Review
    • 6.3 Weather and Climate
    • 6.3.1 What is the difference between weather and climate?
    • 6.3.2 How and why does climate vary around the world?
    • 6.3.3 How do we measure and predict the weather?
  • Chapter 7 – Human Impact on the Climate
    • Chapter Introduction
    • 7.1 The Basic Science of Global Warming
    • 7.1.1 What is the greenhouse effect?
    • 7.1.2 How is human activity strengthening Earth’s greenhouse effect?
    • 7.1.3 How do we know that global warming is really happening and is human-caused?
    • 7.1.4 How does human-caused climate change compare to natural climate change?
    • 7.1 Review
    • 7.2 Consequences of Global Warming
    • 7.2.1 What are the major consequences of global warming?
    • 7.2.2 How do scientists predict future consequences of global warming?
    • 7.2.3 How will climate changes affect you and others around the world?
    • 7.2 Review
    • 7.3 Solutions to Global Warming
    • 7.3.1 What existing technologies could solve the problem of global warming?
    • 7.3.2 What future technologies might help even more?
    • 7.3.3 What does it take to implement a solution?
    • 7.3.4 What will your world look like AFTER we solve global warming?
    • 7.3 Review

I was wondering...

So how does what we call “suction” actually work ?

Perhaps surprisingly, you can answer this question by thinking about how breathing works. When you inhale, you are using your diaphragm and other muscles to expand the volume of your lungs. Figure 1a shows how this causes air to flow into your lungs:

  • Your lungs initially contain a certain amount of air, so in the instant you expand your lungs, this air becomes spread out in a larger volume, which reduces the air pressure.
  • Because the air pressure in your lungs is now lower than the outside atmospheric pressure, the outside air pushes its way into your lungs.

Figure 1b shows the reverse occurring when you exhale:

  • Your muscles contract your lungs, which increases the air pressure within them.
  • Because the air pressure in your lungs is now higher than the outside atmospheric pressure, the air in your lungs is pushed outward.

In other words, the act of breathing in and out is really an act of changing the internal air pressure of your lungs, so that it either becomes greater than or less than the outside pressure. If you think about it, you may realize that this also explains why breathing is more difficult at high altitudes: Because the outside air pressure is lower at higher altitudes, your lungs must expand more than they do at lower altitudes to make their pressure low enough for air to flow in. This increased need for expansion means your muscles must work harder for you to breathe at higher altitudes.

This same idea of mismatched pressures explain all things that we usually call “suction.” Think again about the straw. As we’ve discussed, you cannot be “sucking” the water upward, because your mouth has no direct contact with the water. But are you “sucking” air in from the straw? No. All you are really doing is expanding your lung volume, so that the air in the top of the straw spreads out into your mouth and lungs. This reduces the air pressure in the top of the straw, so that the outside air pressure can push the water upward as you saw in Figure 6.1.1–6.

View Figure 6.1.1-6

In a somewhat similar way, a “vacuum cleaner” uses a motor to push air out from the chamber in the cleaner, which lowers the pressure in the chamber so that the outside air pushed into it. This cleans up dust and debris, because this material is carried along with the inward flowing air (much like dust being blown by the wind).

Even “suction cups” work the same way. Think about pressing a suction cup onto a window. When you push down on it, you push its air outward, so that the pressure inside it is lower than the outside pressure. As a result, the outside air pressure is pushing much harder on the cup than its inside pressure is pushing out, and therefore it is held in place (“stuck” to the window) by that outside push.

To summarize, there’s really no such thing as “suction.” Instead, what we think of as suction is really just the push of air when the pressure is higher on one side of an object than the other.

Back

© 2025 Earth & Space Science – Big Kid Science

x

Figure 6.1.1-6

suction air pressure diagram
Figure 6.1.1–6 – This illustration shows what really happens when you drink from a straw. Notice that you aren’t actually “sucking” water upward, but instead allowing the surrounding air pressure to push the water upward.Credit: Zofostro Science.
Close